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ABSTRACT

The human body is continuously threatened by pathogens, and the immune system must 
maintain a balance between fighting infection and becoming over-activated. Mucosal 
surfaces cover several anatomically diverse organs throughout the body, such as the 
respiratory and gastrointestinal tracts, and are directly exposed to the external environment. 
Various pathogens invade the body through mucosal surfaces, making the mucosa the 
frontline of immune defense. The immune systems of various mucosal tissues display 
distinctive features that reflect the tissues' anatomical and functional characteristics. This 
review discusses the cellular components that constitute the respiratory and gastrointestinal 
tracts; in particular, it highlights the complex interactions between epithelial and immune 
cells to induce Ag-specific immune responses in the lung and gut. This information on 
mucosal immunity may facilitate understanding of the defense mechanisms against 
infectious agents that invade mucosal surfaces, such as severe acute respiratory syndrome 
coronavirus 2, and provide insight into effective vaccine development.
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INTRODUCTION

The mucosal immune system consists of immune inductive and effector sites (1). Mucosal 
immune inductive sites include mucosa-associated lymphoid tissues (MALTs) and mucosa-
draining lymph nodes (LNs). Examples of LNs include the mesenteric (MLNs) and cervical 
LNs (CLNs). MALTs are solitary organized structures containing T and B cell follicles; the 
gut-associated lymphoid tissue (GALT) and nasopharynx-associated lymphoid tissue (NALT) 
are typical examples of MALTs (Fig. 1). The lamina propria (LP) of the mucosa, which is an 
immune effector site, is situated within the subepithelial stroma of mucosal connective tissue 
and contains effector T cells, plasma cells, macrophages, and dendritic cells (DCs).

Igs are humoral immune effectors, of which secretory IgA (SIgA) is a primary humoral 
immune component of the mucosa (2). IgA, which is found in the LP, is produced by plasma 
cells in dimeric form, whereby two IgA components are linked together by a joining chain. 
The dimerization of IgA is necessary for its secretion, which is facilitated by the polymeric 
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Figure 1. Cellular composition of the respiratory and gastrointestinal tracts. (A) The respiratory tract consists of the upper (nasal cavity, pharynx) and lower 
(trachea, bronchus, bronchioles, alveoli) tracts. They are covered by a single layer of epithelial cells, such as multiciliated cells, club cells, goblet cells, basal 
cells, PNECs, tuft cells, ionocytes, serous cells, myoepithelial cells, AT1 and AT2 cells, mesenchymal alveolar niche cells, and AMPs. (B) The small and large 
intestines of the gastrointestinal tract are distinguished by the crypt-villus structure and are composed of columnar epithelial, microfold, Paneth, goblet, 
enteroendocrine, and tuft cells. 
AMP, axin2-positive myofibrogenic precursor.
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Ig receptor (pIgR); the secretory component of pIgR covalently interacts with dimeric 
IgA, completing the structure of the SIgA complex (3). The SIgA complex is transported 
by pIgR from the basolateral to the apical side of the membrane, then released from pIgR, 
and secreted to the mucosal surface. SIgA complexes are protected from proteolysis by 
N-glycosylation of the secretory component.

Alongside SIgA, secretory IgM (SIgM) is also present in mucosal secretions (4). Pentameric 
IgM is translocated to the apical side of the mucosal membrane following binding to pIgR 
via the joining chain. IgG levels are notably higher than SIgA levels in the lower respiratory 
lumen of human airways (5). IgG can be transported into the lumen via the neonatal 
Fc receptor (FcRn), which comprises MHC class I-like transmembrane protein and β2 
microglobulin (6). FcRn also functions as an apical transporter. Although secretory IgD 
is present in mucosal secretions within aerodigestive mucosa, the basolateral transport 
mechanism for IgD is unclear (7). These Igs maintain mucosal homeostasis by controlling 
commensals and protecting against pathogens (8).

The secretory mechanisms of humoral effectors described above are common across various 
mucosal immune compartments. However, the immune systems of diverse mucosal tissues 
also exhibit unique characteristics reflecting their anatomical functions. In this review, we 
discuss the diverse characteristics of regional cellular components in the mucosal immune 
system of the respiratory and gastrointestinal tracts. In particular, we focus on the mucosal 
immune response in the humoral defense network of the lung and gut.

CELLULAR COMPONENTS OF THE RESPIRATORY AND 
GASTROINTESTINAL TRACTS
Respiratory and gastrointestinal epithelia exhibit distinct characteristics but likewise share 
some anatomical similarities. Both epithelia are lined with columnar epithelial cells with cilia 
(respiratory tract) or microvilli (gastrointestinal tract), which they produce a physical barrier 
between the inner body and the environment and act as sentinels for the immune system.

Cellular components of the respiratory system
Respiratory tissues span multiple organs, from the upper respiratory tract (nostrils, nasal 
cavity, and pharynx) to the lower respiratory tract (trachea, bronchi, bronchioles, and alveoli) 
(Fig. 1A) (9). The respiratory tract is wrapped with bands of smooth muscle, which supports 
to airway flow. In humans, a pseudostratified epithelium covers the trachea up to the distal 
bronchioles; however, in mice, the pseudostratified epithelium extends only to the distal 
intralobar bronchi (10). The pseudostratified epithelium is a single layer of epithelial cells 
comprising mainly multiciliated cells, club cells, goblet cells, and basal cells. Multiciliated cells 
have hundreds of motile cilia on their apical area and transport inhaled particulates and mucus 
out of the airways retrogradely (11). Club cells, with their dome-shaped apical surface, are 
primary secretory cells that specifically express uteroglobin (secretoglobin family 1A member 
1), the most abundant protein in mucosal lung secretions, and contribute to homeostatic 
maintenance of the airways (12). Goblet cells secrete mucus, which blocks the influx of inhaled 
particulates. The secretion of mucus is regulated by IL-13, which is produced by type 2 innate 
lymphoid cells (ILC2s). Basal cells act as resident stem cells that are capable of long-term self-
renewal and differentiation into basal, ciliated, and club cells during homeostasis and after 
injury (13). The fate of regenerated cells depends on Notch signaling (14).
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The pseudostratified epithelium contains uncommon cell types, including pulmonary 
neuroendocrine cells (PNECs), tuft cells, and ionocytes (15). PNECs comprise approximately 
1% of the airway epithelium, where they are the only innervated cell type. They manifest in 
clusters known as neuroepithelial bodies in mouse lungs. PNECs function as sensory cells 
by secreting neuropeptides (e.g., calcitonin gene-related peptide), neurotransmitters (e.g., 
serotonin), and bombesin-related peptides (e.g., neuromedin B) in response to changes in 
oxygen levels (16). PNECs also serve as a modulator in the immune responses to allergens 
and in tissue remodeling (16). Tuft cells are referred to by different names, depending on 
the organs in which they are present: brush cells in the airway, microvillous cells in the 
nasopharyngeal cavity, and multivesicular caveolated cells in the intestine (17). Tuft cells 
found in the lung specifically express type II taste receptors and bitter taste receptors; 
activation of the former promotes the release of antimicrobial peptides from neighboring 
ciliated cells by modulating Ca2+ influx. Ionocytes are major expressers of cystic fibrosis 
transmembrane conductor regulator and contribute to the regulation of mucus production 
(18). Submucosal glands and cartilaginous rings control airway function in the lower 
respiratory tract (15). Various cell types line the submucosal glands, including ciliated, 
goblet, serous, and myoepithelial cells; these cells secrete mucus and host defense proteins 
in response to pathogens and toxic substances.

The distal region of the small airways contains the alveolar sacs, where oxygen–carbon 
dioxide exchange occurs, and is hence referred to as the respiratory zone. The alveolar 
epithelium comprises two major epithelial lineages: alveolar type (AT) 1 and 2 cells. AT1 
cells are thin and elongated and cover >95% of the alveolar surface of the adult lung (19). 
AT1 cells are associated with pulmonary capillary epithelial cells and mesenchymal cells to 
form a thin, diffusible gas exchange interface. AT2 cells are cuboidal epithelial cells and can 
be distinguished by their lipid-rich lamellar bodies containing surfactant proteins (SPs), 
such as ATP-binding cassette class A3 and SPs A–D (20). SPs reduce the surface tension of 
the epithelium and prevent atelectasis during respiration. AT2 cells act as alveolar epithelial 
progenitors when they detect the Wnt signal released from fibroblasts; in a steady-state 
condition, Wnt-responsive AT2 cells can self-renew and differentiate into AT1 cells, a process 
that is regulated by bone morphogenetic protein signaling (21). The alveolar structure is 
supported by the extracellular matrix produced from interstitial fibroblasts, such as Axin2-
positive myogenic precursors, Wnt2-expressing platelet-derived growth factor-α-positive 
cells, and mesenchymal alveolar niche cells.

Cellular components of the gastrointestinal system
The gastrointestinal tract has a continuous tube structure and, unlike the respiratory 
tract, displays regionally distinctive anatomical features, such as in the mouth, pharynx, 
esophagus, stomach, small intestine, large intestine, and anus (Fig. 1B). The gastrointestinal 
tract is organized with crypt-villus structures; villi are the finger-like projections found 
within the intestinal wall, and crypts comprise the invaginated structures between villi 
(22). Villi extend along the surface area of the digestively active epithelium, mainly in the 
small intestine. The length of the villi decreases along the small intestinal tract, and the 
small intestine is subdivided into three segments according to villus length: the duodenum, 
jejunum, and ileum, in descending order. In contrast, the large intestine has a flat epithelial 
surface interspaced by crypts. The large intestine is subdivided into the caecum, proximal 
colon, transverse colon, distal colon, and rectum, in descending order (22).
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The layers of intestinal epithelial cells (IECs) can be categorized by their primary functions; 
columnar epithelial and microfold (M) cells are primarily involved in absorption, whereas 
Paneth, goblet, enteroendocrine, and tuft cells are involved in secretion. All IECs are derived 
from crypt base columnar (CBC) cells, known as intestinal stem cells, for which Lgr5 is a 
specific marker (23). The Lgr5+ CBC cells located inside the crypt differentiate into multiple 
lineages of cells and self-renew for long-term maintenance (24). Notch signals promote 
the differentiation of CBC cells into absorptive progenitor cells, which rapidly proliferate 
and maturate to enterocytes and M cells, as induced by bone morphogenetic protein and 
receptor activator of NF-κB ligand signaling, respectively (25,26). Columnar epithelial cells, 
known as enterocytes, are the predominant cell type that absorbs digested nutrients in the 
small intestine. Enterocytes also play an essential role in maintaining mucosal homeostasis 
by regulating mucosal integrity and crosstalk among immune cells, including DCs and 
intraepithelial lymphocytes (27). The M cells located in the follicle-associated epithelium 
(FAE) of GALTs are specialized in the uptake of luminal Ags (28). M cells are recognized by 
their unique morphology, which constitutes short, irregular microvilli and an intraepithelial 
pocket containing various leukocytes (29). M cells can also be identified by monoclonal 
Abs specific to α (1,2)-fucose-containing carbohydrate moieties or by proteins expressed 
specifically on the apical surface of M cells, such as glycosylphosphatidylinositol-anchor 
protein 2 (GP2) and complement C5a receptor (C5aR) (30,31). M cells take up luminal Ags 
but are also utilized as an infection route by many pathogens, such as Salmonella typhimurium, 
Yersinia enterocolitica, and Listeria monocytogenes (29).

Secretory progenitor cells mature into Paneth, goblet, enteroendocrine, and tuft cells when 
they detect Wnt and other unidentified signals (23). Paneth cells are observed only in the 
small intestine and are concentrated mainly within the crypts of the terminal ileum. Paneth 
cells secrete various antimicrobial proteins, such as α-defensin, lysozymes, and C-type lectins 
(32). Additionally, they control crypt stem cell activity by secreting epidermal growth factor 
and Wnt3 and by expressing Notch ligand Delta-like 4 (33). Unlike Paneth cells, the frequency 
of mucin-secreting goblet cells in the lower tract increases towards the colon (34). The small 
intestine is covered by a loose layer of mucus known as glycocalyx; the colon also contains 
glycocalyx, as well as a denser mucosal layer underneath. The major component of intestinal 
mucus is mucin 2, a lack of which induces spontaneous colitis by allowing direct contact of 
IECs with bacteria (35). Another secretory product of goblet cell is small protease-resistant 
trefoil factor 3, which binds to the cysteine-rich domain of mucin 2 and influences the 
viscosity of mucus (36).

Hormone-producing enteroendocrine cells are distributed throughout the gut mucosa in the 
crypts and villi, but they only constitute 1% of the total gut epithelial cell population (37). 
Enteroendocrine cells comprise several subgroups showing regional differences, and their 
primary function is to orchestrate responses to ingested nutrients by secreting individual 
hormone peptides in the gut mucosa (38). I and K cells present in the jejunum secrete 
cholecystokinin and gastric inhibitory peptide, respectively, along with 5-hydroxytryptamine 
(5-HT, serotonin). L cells are present in the ileum and colon, where they secrete glucagon-
like peptides 1 and 2 and polypeptide YY. Enterochromaffin cells, the most abundant 
enteroendocrine cell type, are distributed throughout both the small and large intestines and 
secrete 5-HT. Enteroendocrine cells play an essential role in gut sensing via the expression 
of various receptors, such as G protein-coupled receptors 40, 41, and 43, TLRs 1, 2, and 4, 
and taste receptors (types I and II). Tuft cells comprise approximately 0.4% of IECs and are 
characterized by their bottle-shaped morphology, apical microvilli, and the expression of 
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transient receptor potential cation channel subfamily M member 5 (39). Tuft cells are the 
sole producers of IL-25, which promotes type 2 immune responses and intestinal remodeling 
via the activation of ILC2s (40). Collectively, these epithelial cells actively produce a mucosal 
barrier to block the invasion of luminal Ags and pathogens.

Cellular crosstalk between epithelial cells and immune cells in the lung and gut
Under steady-state conditions, AT2 cells are the primary source of colony-stimulating 
factor 2 (CSF2) and IL-33 in the lung, which play critical roles in lung-specific imprinting 
of pulmonary basophils and in stimulating ILC2s to produce CSF2 and IL-13 (41). CSF2 is a 
critical modulator of differentiation and/or maturation of alveolar macrophages (AMs) from 
fetal liver embryonic precursors or immature AMs (42). AMs reside in the alveolar lumen, 
where they clear surfactants and act as immune modulators. CSF2 signaling regulates 
tissue-specific differentiation of AMs by inducing the master transcription factor peroxisome 
proliferator-activated receptor gamma, which is a key regulator of lipid metabolism (43). 
AMs express TGF-β, which prevents unnecessary immune activation (44). Human AMs share 
common surface markers with lung macrophages, such as HLA-DR, CD11b, CD11c, and 
CD64; they can be distinguished from lung macrophages by examining autofluorescence 
and detecting the expression of CD206, CD169, and MARCO (45). Interstitial macrophages 
reside in the space between the lung epithelium and capillaries. They consist of two main 
populations: LYVE-1lowMHC IIhigh and LYVE-1highMHC IIlow cells. LYVE-1lowMHC IIhigh cells are 
located close to neurons and are specialized in Ag presentation (46). LYVE-1highMHC IIlow 
perivascular macrophages are functionally involved in wound healing and tissue repair.

Under steady-state conditions, myeloid cells in the small intestine express IL-1β, IL-6, and 
IL-23 (47). The adhesion of segmented filamentous bacteria to IECs induces the release 
of serum amyloid A, which triggers the expression of IL-1β and IL-23 in DCs (48). These 
cytokines promote Th17 cell differentiation and activation of group 3 innate lymphoid cells. 
Regenerating islet-derived protein 3γ also promotes IEC repair (49). Mucin production in 
goblet cells is increased via the IL-22-signal transducer and activator of transcription 3 axis 
(50). Tuft cells constitutively express IL-25, which induces ILC2 activation, resulting in IL-5, 
IL-9, and IL-13 secretion. IL-13 triggers the differentiation of epithelial cells into goblet and 
tuft cells, causing a feedback loop (40). In the large intestine, enteroendocrine L cells express 
glucagon-like peptide-2, which inhibits colonic crypt cell apoptosis and increases crypt 
depth and colon length (51). In addition, bacterial metabolites, including butyrate, trigger 
the release of 5-HT, which plays critical roles in enteric nervous system development, gut 
motility, T cell activation, and eosinophil migration (52).

INDUCTION AND REGULATION OF MUCOSAL IMMUNE 
RESPONSES IN THE RESPIRATORY SYSTEM
IgA is the most abundant Ab in the upper respiratory tract, whereas IgG is dominant in the 
lower respiratory tract (53). NALT is a mucosal immune inductive site in the upper respiratory 
tract that is composed of several cell types and structures, including FAE cells, M cells, B cell 
follicles containing uncommitted (IgD+ and IgM+) B cells, T cell areas with DC enrichment, 
and high endothelial venules (54). Following initial Ag exposure in NALT, the germinal center 
(GC) is induced; nasal DCs take up Ags and migrate into CLNs, which are also immune 
inductive sites (Fig. 2). Nasal DCs encounter Ags via their dendrites or M cells, which are 
specialized epithelial cells that take up luminal Ags via pinocytosis and endocytosis. Effector 
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cells, including Ag-specific IgA+ B cells, move to the nasal passage, which is a mucosal 
effector site. The nasal passage epithelium consists of multiciliated cells and mucus-
producing goblet cells (55). In the nasal passage, mucosal Abs, including SIgA and IgG, are 
secreted via specific receptors, pIgR and FcRn, respectively. IgM−IgD+ plasma cells undergo 
IgM-to-IgD class switch recombination (CSR) in NALT; this process is rare or absent in 
systemic lymphoid tissues (8,56).

Under steady-state conditions, murine nasal DCs consist of CD11c+MHCII+CD103+CD11b+ 
(CD103+CD11b+), CD11c+MHCII+CD103-CD11b+ (CD103−CD11b+), and CD11c+MHCII+CD103+CD11b− 
(CD103+ CD11b−) cells. CD103+CD11b+ DCs predominantly reside in the nasal passage, whereas 
CD103−CD11b+ DCs are located mostly in the FAE of NALT (57). After nasal immunization or 
pathogenic infection, nasal DCs, especially CD103−CD11b+ cells, rapidly migrate into CLNs and 
induce T cell priming (54,58). Under steady-state conditions, the DCs of human nasopharyngeal 
tissue are composed of both major BDCA-1+ cells and minor BDCA-3high cells; reduced levels of 
these cells are found in patients with chronic rhinosinusitis (57).
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In the lower respiratory tract, immunological events occur mainly in bronchi and 
bronchioles, in which the interstitium contains various immune cells such as DCs, mast cells, 
and ILCs. Conventional DCs (cDCs) in the lung consist of CD11bhighCD103−CD11c+SIRPα+ 
cells (cDC2) and CD11b−CD11c+Langerin+CD103+ cells (cDC1), which are primed for Ag 
uptake due to their immature states (59). CD103+ DCs located below the bronchial epithelium 
extend their dendrites into the airway lumen via formation of tight junctions with epithelial 
cells (60). Following the uptake of inhaled Ags, CD103+ DCs are stimulated by alarmins, 
including thymic stromal lymphopoietin and IL-25. Maturated CD103+ DCs then migrate to 
mediastinal LNs and initiate Ag-specific immune responses via activation of naïve T cells. 
CD11bhighCD103− cells are required for the induction of Ag-specific CD8+ T cell priming (61). 
For example, during an influenza infection, only CD11bhighCD103- cells can efficiently process 
and present Ags to MHC class I receptors in the lung. After migration, CD11bhighCD103- cells 
then cross-prime CD8+ T cells in the mediastinal LN. In the conducting airways, plasmacytoid 
DCs, defined by the expression of CD11c, B220, and plasmacytoid DC Ag-1, produce type 
I IFNs in response to viral infection and modulate regulatory T cells for lung homeostatic 
maintenance (62).

INDUCTION AND REGULATION OF MUCOSAL ABS IN 
THE GASTROINTESTINAL SYSTEM
Introduction of luminal Ags into the gastrointestinal immune system
The gastrointestinal immune system consists of GALT and LP. Since luminal Ag influx is 
tightly regulated by IECs, introduction of luminal Ags for priming Ag-specific adaptive 
immunity occurs primarily in M-cell-containing GALTs (27). Examples of GALTs include 
Peyer's patches (PPs), solitary isolated lymphoid tissues (SILTs), cecal patches, and colonic 
patches (1,22). These lymphoid tissues have different distributions across the gut segments; 
PPs are abundant in the terminal ileum but scarce in the duodenum. In the large intestine, 
cecal patches and colonic patches, which are lymphoid structures similar to PPs, are found 
in the appendix and in the colon and rectum, respectively (63). SILTs observed throughout 
the intestine contain cryptopatches, in which isolated lymphoid follicles mature (64). 
The distribution of mature SILTs is correlated with bacterial burden; in humans, isolated 
lymphoid follicles are concentrated in the ileum and rectosigmoid colon (65). Each regional 
lymph of the gastrointestinal mucosa, including regional GALT, drains along the length 
of the mucosa and flows through the thoracic duct into the blood circulation (22). For 
example, lymph from the duodenum of the small intestine and the traverse colon drains into 
duodenopancreatic LNs embedded in pancreatic tissue; lymph from the jejunum drains to 
the middle MLNs, and lymph from the ileum, caecum, and ascending colon collects in the 
distal segments of the MLNs (Fig. 3A). Given the differences in cellular components and 
environment along the length of the intestine, each draining LN conducts regional tissue-
specific adaptive immune responses.

PPs are the best-characterized GALTs (66). PPs are separated from the lumen by 
FAE, which contains a limited number of goblet and Paneth cells and creates a thin 
mucus layer containing antimicrobial peptides. In the subepithelial dome (SED), 
MHChighCD11highCD11b+CD8a− cells inhibit the expression of Axin2-positive myogenic 
precursor by secreting IL-22 binding protein, which reduces the level of circulating IL-22 
(67,68). This environment allows luminal Ags to access M-cell-containing FAE. In the M cells, 
the transport of luminal Ags is facilitated by transport receptors, such as GP2, C5aR, integrin 
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β1, and CD155 poliovirus receptor; these receptors are capable of binding whole luminal 
bacteria and soluble Ags (Fig. 3B) (27,31,69,70). For example, GP2 interacts with FimH of type 
I piliated bacteria, such as Escherichia coli and S. typhimurium, and can transport them into PPs 
(31). C5aR interacts with outer membrane protein H of Y. enterocolitica (69). Ags conjugated 
to M-cell-specific Ab (NKM 16-2-4), anti-GP2 Ab, or C5aR ligand are transcytosed via M cells, 
which can then induce Ag-specific immune responses (71,72). Lysozyme-expressing DCs that 
are localized to M cells extend their dendrites through M-cell-specific transcellular pores to 
the lumen, where they can take up luminal pathogens such as S. typhimurium (73).

In other LNs, Ags and soluble molecules flow from the afferent lymphatics into the LN 
parenchyma through a conduit network consisting of fibroblastic reticular cells and their 
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specialized collagen fibers (74). However, Ag influx into PPs mainly depends on M cells 
because PPs do not contain afferent lymphatics (27). Interestingly, a recent study reported 
a specialized conduit system in PPs (75). Intestinal fluid absorption occurs due to the local 
osmotic gradient via ion channels, after which the fluid flows from SED to the follicle and 
interfollicular regions (IFRs) of PPs. In this study, 14 kDa hen egg lysozyme labeled with 
Alexa Fluor 488 was shown to rapidly penetrate PPs and flow along the conduit network in 
explanted intestinal loops. Although the mechanistic link between conduit flow and immune 
induction remains unknown, disruption of the conduit flow has been linked to an impaired 
mucosal Ab response. Therefore, these observations suggest that regulation of Ag delivery 
within PPs is closely related to Ag-specific mucosal immune induction.

The LP underlying the intestinal villi is an immune effector site. Soluble Ags from the 
lumen can be delivered into the LP via goblet-cell-associated Ag passages and the extended 
dendrites of CX3CR1+ cells (Fig. 3B) (76). In the LP, the Ags encounter CD103+ DCs either 
directly or via connexin 43-expressing gap junctions. CD103+ DCs that have taken up Ags 
migrate to MLNs in a CCR7-dependent manner to induce tolerance to the Ags (77).

Induction of IgA responses in the gastrointestinal tract
Once Ags have translocated into PPs, they encounter the SED environment, which is a 
niche located between the FAE and B cell follicles. The SED contains double-negative cDCs, 
lysozyme-expressing DCs, macrophages, T cells, and B cells (78). Current evidence suggests 
that T-cell-dependent IgA induction is initiated following the cognate interaction between 
DCs and follicular helper T (Tfh) cells in the IFR of PPs (Fig. 3C). SED-localized DCs likely 
drive the initiation of Ag-specific immune responses, because their primary function is 
to capture translocated luminal bacteria, such as E. coli, SIgA-coated Shigella flexneri, and 
S. typhimurium (79). In addition, DCs bearing Ags or DCs stimulated by TLR7 ligands were 
reported to move from the SED into the IFR of PPs (80). Nevertheless, the mechanism by 
which Ags move from the SED to B cell follicles is poorly understood.

Recent studies showed that the early IgA response occurs without clonal selection in CCR6+ 
B cells of the SED. This is in contrast to other LNs, in which B cell clones that exhibit low 
affinity to Ags fail to survive, and high-affinity Ag receptor-expressing B cell clones are 
preferentially selected for differentiation into early plasmablasts in GCs (81,82). CCR6+ 
B cells localized to the SED generally encounter Ags that have been transcytosed by M 
cells. They then initiate CSR to IgA in response to cognate Ag stimulation without clonal 
selection; this process occurs after the expression of activation-induced cytidine deaminases 
in CCR6+ B cells. Furthermore, low-affinity B cell clones extensively proliferate without any 
competition in a T-cell-dependent manner within the SED, even though some CD4+ T cells 
in the SED are Tfh cells related to B cell clonal selection via T cell receptor–peptide–MHC 
class II interactions (83,84). However, low-affinity B cell clones fail to enter the pre-existing 
GCs; only high-affinity B cell clones are preferentially selected, after which they expand and 
undergo somatic hypermutation in pre-existing GCs of PPs.

PP GCs spontaneously arise during homeostatic response and continuously exist (85). In 
the GCs of peripheral LNs, follicular DCs (FDCs) present Ags as part of immune complexes 
to select for high-affinity B cells (86). It is currently unclear whether FDCs are necessary for 
the selection of high-affinity IgA-expressing B cell clones in PPs. FDCs are likely involved in 
the IgA response during GC reactions, as reports have shown that IgA deposition follows 
the distribution of the FDC network. In steady-state PPs, FDCs that have been stimulated 
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by TLR and retinoic acid receptor signaling express chemokines and survival factors, which 
facilitate IgA B cell differentiation (78,87). In addition, a cathelin-related antimicrobial 
peptide contributes to FDC stimulation, which in turn enhances IgA B cell differentiation 
(88). Following GC reactions, selected plasma precursor cells migrate through the lymph, 
which drains along the length of the mucosa into specific draining LNs. The plasma precursor 
cells then flow through the thoracic lymph duct into the blood circulation, after which they 
can home to the LP of the small and large intestines (8). This homing process is regulated 
by specific receptors. The microenvironment of PPs induces plasmablasts to express α4β7, 
CCR9, and CCR10, which target the plasmablasts to the small and large intestine (89). In 
addition, mucosal memory cells and long-lived plasma cells were found in mice after infection 
and oral immunization. IgA+ memory B cells can be characterized by their expression of 
IL-17 receptor C, IL-22 receptor subunit α2, α4β7, CCR9, and CCR10 (90). However, the 
generation and maintenance of IgA+ memory B cells are not clearly understood. In addition 
to the T-dependent pathway, gut IgA can be generated by the T-independent pathway. The 
T-independent pathway is induced by the innate signaling of TLR ligands, a proliferation-
inducing ligand, and B cell activation factor. A recent study reported that intestinal epithelial 
endoplasmic reticulum stress induces peritoneal B1b cells to differentiate into gut-homing 
IgA+ plasma cells (91). These findings suggest that B cell responses induced by T-cell-
dependent and -independent pathways may differ in their origin and activation signals.

Other Ab responses in the gastrointestinal tract
Cooperation between SIgM and SIgA improves the prevention of bacterial dissemination (8). 
For example, the oral administration of S. typhimurium coated with SIgM and SIgA reduces 
mucosal infection and systemic dissemination of the pathogen. IgM-secreting plasma cells 
are observed mainly in the terminal ileum of humans, where they constitute 10%–20% 
of total plasma cells. In the gut, IgM+IgD−CD27+ memory B cells can undergo IgA CSR in 
response to T-cell-dependent and -independent pathways; this strategy enables a rapid 
response to microbial infection. Additionally, commensal microbe-specific IgG is detected 
in intestinal mucosa and peripheral blood. The presence of the commensal bacterium 
Akkermansia muciniphila in mucus can activate bacteria-specific Tfh cells, resulting in the 
production of specific IgG1 in the gut (92). Furthermore, highly protective levels of IgG were 
identified in mice infected with Citrobacter rodentium (93). Pathogen-specific IgG, but not 
IgA or IgM, is necessary to eliminate pathogens from the intestinal mucosa, as IgG-coated 
pathogens are subsequently killed by neutrophils in the intestinal lumen.

HOMEOSTATIC MAINTENANCE AND BREAKDOWN OF 
MUCOSAL FIREWALLS
Respiratory pathogen infections vary in their severity, from mild common colds to deadly 
pandemics. Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
caused a global pandemic, known as coronavirus disease 2019 (COVID-19) (94). SARS-CoV-2 
utilizes host receptors to enter into cells, namely human angiotensin-converting enzyme 
2 (ACE2) and type II transmembrane serine protease (TMPRSS2). Several single-cell RNA 
sequencing reports suggest that ACE2+TMPRSS2+ cells include ciliated and goblet cells in 
the nasal epithelium, AT2 cells in alveoli, and enterocytes in the ileum and colon (95,96). In 
addition, SARS-CoV-2 infection was detected in ciliated cells and AT2 cells in autopsied lungs 
using RNA in situ hybridization. Given that the role of AT2 cells is closely associated with 
alveolar regeneration, damage to AT2 cells by viral infection may lead to acute alveolar damage 
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(97). Although the immune response to SARS-CoV-2 has not yet been fully elucidated, it can 
be modelled using studies from other respiratory viruses, including SARS-CoV (Fig. 4). In the 
alveoli, SARS-CoV-2 infection in AT2 cells induces pyroptosis, which triggers the generation of 
pro-inflammatory cytokines from neighboring epithelial cells, endothelial cells, and AMs. The 
cytokines promote the recruitment of monocytes, macrophages, and T cells to the infected 
area, which then cause further inflammation. The attraction of virus-specific CD8+ T cells 
facilitates the elimination of virus-infected cells, thus blocking further spread of the virus. 
Neutralizing Abs also inhibit viral infection and trigger AM phagocytosis of neutralized viral 
particles. These immune responses can clear the virus while causing only mild lung damage. 
Consequently, the level of adaptive immunity determines the severity of the disease. In 
contrast, hyperaccumulation of immune cells promotes excessive infiltration of mononuclear 
phagocytes, which can in turn induce a systemic cytokine storm, pulmonary edema, and 
pneumonia; the result is widespread inflammation and multi-organ damage.
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In addition to severe respiratory symptoms, some COVID-19 patients also develop 
gastrointestinal symptoms (94). Recent data suggest that SARS-CoV-2 targets 
ACE2+TMPRSS2+ enterocytes, which also reside in the intestine; thus, the gut is likely to be 
a target organ for SARS-CoV-2 infection. SARS-CoV-2 has been shown to infect, replicate, 
and produce infectious viral particles in human epithelial cells and human small intestinal 
organoids (98). Given that ACE2 expression is decreased upon SARS-CoV binding, reduced 
ACE2 expression is also expected during SARS-CoV-2 infection. ACE2 dysfunction caused 
by decreased ACE2 expression may also affect the composition of the gut microbiota by 
suppressing the expression of neutral amino acid transporters in IECs, thereby decreasing 
nicotinamide levels (99). Therefore, ACE2 dysfunction during SARS-CoV-2 infection may 
be sufficient to alter the composition of the gut microbiota, as COVID-19 patients show a 
change in gut microbiota composition to increased opportunistic pathogens and often have 
decreased levels of butyrate-producing bacteria (99,100). While the impact of COVID-19 on 
gut disorders remains unclear, evidence suggests that COVID-19 influences the systemic 
dissemination of bacteria, endotoxins, and microbial metabolites. Additionally, it may trigger 
a systemic cytokine storm and multiorgan dysfunction. Therefore, we hypothesize that the 
effects of the gut microbiota on lung immunity may mediate the effects of COVID-19 on the 
gut-lung axis (Fig. 4). Additionally, we suggest that protective immune response against 
SARS-CoV-2 in the gut may be able to play an important role in controlling the pathogenesis 
of COVID-19.

CONCLUDING REMARKS

In this review, we summarize the cellular components of the lung and gut. We also 
describe their crosstalk in Ag-specific immune responses, and the implications thereof for 
vaccine development in terms of the route of vaccine administration. Ag-specific immune 
responses in the mucosal compartment are particularly important for protecting against 
mucosal pathogens, including SARS-CoV-2, since Ab can block viral entry to the mucosal 
compartment. Although parenteral vaccination can induce protective IgG at the respiratory 
mucosa, mucosal immunization through the nasopharyngeal route can induce potent T cell 
and IgA responses in mucosal compartments, including the upper respiratory tract. Given 
that the currently available mucosal vaccines contain live-attenuated viruses, the development 
of a mucosal vaccine for COVID-19 may be challenging. Furthermore, weakly immunogenic 
vaccines, such as protein subunit vaccines, cannot be administered via the nasopharyngeal 
route due to the lack of safe adjuvants. Therefore, future studies are required to optimize 
currently available live-attenuated vaccines and mucosal adjuvants.
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